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Data-Driven Reinforcement Learning
Value-Based Episodic Memory [ICLR’22]

The Role of 𝜸𝜸 in Offline RL [ICML’22]

Hierarchical Offline RL [AAAI’23]

2

Provable Unsupervised Data 
Sharing [ICLR’ 23]

Unsupervised Behavior 
Extraction [NeurIPS’23]

Offline RL

Unsupervised 
Offline RL

RL with LLMsReason for future, Act for Now [Under Review]
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Why Offline Reinforcement Learning？

3

 Data is cheap, exploration is expensive



44Machine Intelligence Group, IIIS, Tsinghua University

What is Offline Reinforcement Learning？

4

 Decoupling learning and exploration
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The Key Ingredient: Pessimism

5

 Avoid bad decision-making
 Select the most “not-bad” action

argmaxa 𝜇𝜇 𝑎𝑎 − 𝑘𝑘𝑘𝑘(𝑎𝑎)

… …
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Offline Reinforcement Learning

Value-Based Episodic Memory [ICLR’22]

The Role of 𝛄𝛄 in Offline RL [ICML’22]

Hierarchical Offline RL [AAAI’23]
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Conservatism Optimality

Behavior 
Cloning Off-Policy On-PolicyOffline
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Value-Based Episodic Memory [ICLR’22]
 Bellman expectation operator for 𝑄𝑄𝜋𝜋

𝒯𝒯𝜋𝜋𝑉𝑉 𝑠𝑠 = 𝔼𝔼 𝑎𝑎~𝜋𝜋(⋅|𝑠𝑠)
𝑠𝑠𝑠~𝑝𝑝(⋅|𝑠𝑠,𝑎𝑎)

𝑟𝑟 𝑠𝑠,𝑎𝑎 + 𝛾𝛾𝑉𝑉 𝑠𝑠𝑠

 Bellman optimality operator for 𝑄𝑄∗

𝒯𝒯𝑉𝑉 𝑠𝑠 = max
a

𝔼𝔼𝑠𝑠𝑠~𝑝𝑝(⋅|𝑠𝑠,𝑎𝑎) 𝑟𝑟 𝑠𝑠,𝑎𝑎 + 𝛾𝛾𝑉𝑉 𝑠𝑠𝑠

7
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Expectiles
 A similar statistic as quantile

 Quantile: minimizer of quantile regression loss

𝑄𝑄𝑄𝑄 𝑞𝑞; 𝜇𝜇, 𝜏𝜏 = 𝔼𝔼𝑍𝑍∼𝜇𝜇 𝜏𝜏𝟙𝟙𝜏𝜏>𝑞𝑞 + 1 − 𝜏𝜏 𝟙𝟙𝜏𝜏≤𝑞𝑞 |𝑍𝑍 − 𝑞𝑞|

 Expectile: minimizer of expectile regression loss

𝐸𝐸𝑄𝑄 𝑞𝑞; 𝜇𝜇, 𝜏𝜏 = 𝔼𝔼𝑍𝑍∼𝜇𝜇 𝜏𝜏𝟙𝟙𝜏𝜏>𝑞𝑞 + 1 − 𝜏𝜏 𝟙𝟙𝜏𝜏≤𝑞𝑞 𝑍𝑍 − 𝑞𝑞 2

8
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Expectile V-learning

 Bellman expectile operator 𝒯𝒯𝜏𝜏
𝜇𝜇

𝒯𝒯𝜏𝜏
𝜇𝜇 𝑉𝑉 𝑠𝑠 ≔ 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝔼𝔼𝑎𝑎~𝜇𝜇 𝜏𝜏 𝛿𝛿 𝑠𝑠,𝑎𝑎 +

2 + 1 − 𝜏𝜏 −𝛿𝛿 𝑠𝑠,𝑎𝑎 +
2 ,

where 𝛿𝛿 𝑠𝑠,𝑎𝑎 = 𝔼𝔼𝑠𝑠𝑠 𝑟𝑟 𝑠𝑠, 𝑎𝑎 + 𝛾𝛾𝑉𝑉 𝑠𝑠𝑠 − 𝑣𝑣 , ⋅ + = max{0,⋅} .

 𝜏𝜏 = 1/2 : Bellman expectation operator
𝒯𝒯1/2
𝜇𝜇 𝑉𝑉 𝑠𝑠 = 𝔼𝔼𝑎𝑎~𝜇𝜇 𝑟𝑟 𝑠𝑠,𝑎𝑎 + 𝛾𝛾𝑉𝑉 𝑠𝑠𝑠

 τ → 1− : Bellman optimality operator
lim
𝜏𝜏→1−

𝒯𝒯𝜏𝜏
𝜇𝜇 𝑉𝑉 𝑠𝑠 = max

𝑎𝑎
𝑟𝑟 𝑠𝑠, 𝑎𝑎 + 𝛾𝛾𝑉𝑉 𝑠𝑠𝑠

9
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Trade-offs with different 𝜏𝜏

𝜏𝜏 achieve a trade-off between generalization and conservatism

10

Evaluation error on a random MDP with 
random noise applied on the operator
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 Evaluation on D4RL tasks
Experiments

11
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 Evaluation on D4RL tasks
Experiments
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Flow to control [AAAI’23]
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Error Decomposition

14

�𝜋𝜋/𝜋𝜋∗ 𝜋𝜋𝛽𝛽/𝜋𝜋𝜃𝜃 Environment

𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙

𝑠𝑠ℎ𝑖𝑖𝑖𝑖ℎ
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Error Decomposition
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Flow-based Generative Models

16
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Flow-based Generative Models

17
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Flow-based Generative Models

18
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Experiments

19
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Unsupervised Offline RL

Reward-free Offline RL  

Action-free Offline RL (Videos)

20

Provable Unsupervised Data 
Sharing [ICLR’ 23]

Unsupervised Behavior 
Extraction [NeurIPS’23]

Passive RL with State-Centric 
Planning [Under Review]
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Unsupervised Offline RL

Reward-free Offline RL  

Action-free Offline RL (Videos)
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Provable Unsupervised Data 
Sharing [ICLR’ 23]

Unsupervised Behavior 
Extraction [NeurIPS’23]

Passive RL with State-Centric 
Planning [Under Review]
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Motivation: Can we bring in even more data?

22

 Abundant reward-free data, containing useful human 
behaviors
 How to extract them effectively from offline data?
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Motivation

23

 Human conduct a behavior based on some intentions – A 
reward function, but we don’t know them
 We can learn similar behaviors by randomly sampling 

from the distribution of intentions
 In fact, we can use random intentions 
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Random Neural Networks as Priors

24



25Machine Intelligence Group, IIIS, Tsinghua University

Policy Composition
 Policy set

 Utility

 Composition

25
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UBER: Unsupervised Behavior Extraction
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Experiments: Diversity

27
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Experiments: Diversity
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Experiments: Usefulness

29
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Experiments: Usefulness
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Multi-task: Meta-world
 Source: Push, Reach, Pick-place
 Target: Hammer, Peg-Insert-Side, Push-Wall, Pick-Place-

Wall, Push-Back, Shelf-Place

31
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Results

32
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Theoretical Analysis: Coverage

33
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RL with LLMs: Autonomous Agents

34

Reason for future, Act for Now [Under Review]
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RL with LLMs: Planning

35
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RL with LLMs: Learning

36
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Game of 24

37

 Game of 24
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RAFA Algorithm

38
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Experiments

39

 Game of 24
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Experiments

40

 ALFWorld
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Experiments

41
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Experiments

42
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